Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
Funct Plant Biol ; 49(6): 542-553, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34511179

RESUMO

A method that separately quantifies the PSII with inactive oxygen-evolving complex (OEC) and active D1 retaining the primary quinone acceptor (QA )-reducing activity from the PSII with damaged D1 in the leaf was developed using PAM fluorometry. It is necessary to fully reduce QA to obtain F m , the maximum fluorescence. However, QA in PSII with inactive OEC and active D1 would not be fully reduced by a saturating flash. We used the acceptor-side inhibitor DCMU to fully reduce QA . Leaves of cucumber (Cucumis sativus L.) were chilled at 4°C in dark or illuminated with UV-A to selectively inactivate OEC. After these treatments, F v /F m , the maximum quantum yield, in the leaves vacuum-infiltrated with DCMU were greater than those in water-infiltrated leaves. In contrast, when the leaves were illuminated by red light to photodamage D1, F v /F m did not differ between DCMU- and water-infiltrated leaves. These results indicate relevance of the present evaluation of the fraction of PSII with inactive OEC and active D1. Several examinations in the laboratory and glasshouse showed that PSII with inactive OEC and active D1 was only rarely observed. The present simple method would serve as a useful tool to clarify the details of the PSII photoinhibition.


Assuntos
Clorofila , Cucumis sativus , Diurona/farmacologia , Fluorometria , Oxigênio , Complexo de Proteína do Fotossistema II/fisiologia , Água
2.
Elife ; 102021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515634

RESUMO

Phycobilisome (PBS) is the main light-harvesting antenna in cyanobacteria and red algae. How PBS transfers the light energy to photosystem II (PSII) remains to be elucidated. Here we report the in situ structure of the PBS-PSII supercomplex from Porphyridium purpureum UTEX 2757 using cryo-electron tomography and subtomogram averaging. Our work reveals the organized network of hemiellipsoidal PBS with PSII on the thylakoid membrane in the native cellular environment. In the PBS-PSII supercomplex, each PBS interacts with six PSII monomers, of which four directly bind to the PBS, and two bind indirectly. Additional three 'connector' proteins also contribute to the connections between PBS and PSIIs. Two PsbO subunits from adjacent PSII dimers bind with each other, which may promote stabilization of the PBS-PSII supercomplex. By analyzing the interaction interface between PBS and PSII, we reveal that αLCM and ApcD connect with CP43 of PSII monomer and that αLCM also interacts with CP47' of the neighboring PSII monomer, suggesting the multiple light energy delivery pathways. The in situ structures illustrate the coupling pattern of PBS and PSII and the arrangement of the PBS-PSII supercomplex on the thylakoid, providing the near-native 3D structural information of the various energy transfer from PBS to PSII.


Assuntos
Microscopia Crioeletrônica/métodos , Complexo de Proteína do Fotossistema II/fisiologia , Ficobilissomas/fisiologia , Porphyridium/ultraestrutura , Modelos Moleculares , Porphyridium/fisiologia , Conformação Proteica , Tilacoides/ultraestrutura
3.
Int J Mol Sci ; 22(10)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067635

RESUMO

The color of bracts generally turns yellow or black from green during cereal grain development. However, the impact of these phenotypic changes on photosynthetic physiology during black bract formation remains unclear. Two oat cultivars (Avena sativa L.), 'Triple Crown' and 'Qinghai 444', with yellow and black bracts, respectively, were found to both have green bracts at the heading stage, but started to turn black at the flowering stage and become blackened at the milk stage for 'Qinghai 444'. Their photosynthetic characteristics were analyzed and compared, and the key genes, proteins and regulatory pathways affecting photosynthetic physiology were determined in 'Triple Crown' and 'Qinghai 444' bracts. The results show that the actual PSII photochemical efficiency and PSII electron transfer rate of 'Qinghai 444' bracts had no significant changes at the heading and milk stages but decreased significantly (p < 0.05) at the flowering stage compared with 'Triple Crown'. The chlorophyll content decreased, the LHCII involved in the assembly of supercomplexes in the thylakoid membrane was inhibited, and the expression of Lhcb1 and Lhcb5 was downregulated at the flowering stage. During this critical stage, the expression of Bh4 and C4H was upregulated, and the biosynthetic pathway of p-coumaric acid using tyrosine and phenylalanine as precursors was also enhanced. Moreover, the key upregulated genes (CHS, CHI and F3H) of anthocyanin biosynthesis might complement the impaired PSII activity until recovered at the milk stage. These findings provide a new insight into how photosynthesis alters during the process of oat bract color transition to black.


Assuntos
Avena/metabolismo , Flores/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Clorofila/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Tilacoides/metabolismo
4.
PLoS One ; 16(6): e0249230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34157031

RESUMO

Cytokinins (CKs) plays a key role in plant adaptation over a range of different stress conditions. Here, we analyze the effects of a cytokinin (i.e., kinetin, KN) on the growth, photosynthesis (rate of O2 evolution), PS II photochemistry and AsA-GSH cycle in Trigonella seedlings grown under cadmium (Cd) stress. Trigonella seeds were sown in soil amended with 0, 3 and 9 mg Cd kg-1 soil, and after 15 days resultant seedlings were sprayed with three doses of KN, i.e.,10 µM (low, KNL), 50 µM (medium, KNM) and 100 µM (high, KNH); subsequent experiments were performed after 15 days of KN application, i.e., 30 days after sowing. Cadmium toxicity induced oxidative damage as shown by decreased seedling growth and photosynthetic pigment production (Chl a, Chl b and Car), rates of O2-evolution, and photochemistry of PS II of Trigonella seedlings, all accompanied by an increase in H2O2 accumulation. Supplementation with doses of KN at KNL and KNM significantly improved the growth and photosynthetic activity by reducing H2O2 accumulation through the up-regulation AsA-GSH cycle. Notably, KNL and KNM doses stimulated the rate of enzyme activities of APX, GR and DHAR, involved in the AsA-GSH cycle thereby efficiently regulates the level of AsA and GSH in Trigonella grown under Cd stress. The study concludes that KN can mitigate the damaging effects of Cd stress on plant growth by maintaining the redox status (>ratios: AsA/DHA and GSH/GSSG) of cells through the regulation of AsA-GSH cycle at 10 and 50 µM KN under Cd stress conditions. At 100 µM KN, the down-regulation of AsA-GSH cycle did not support the growth and PS II activity of the test seedlings.


Assuntos
Cinetina/metabolismo , Estresse Fisiológico/fisiologia , Trigonella/metabolismo , Antioxidantes/farmacologia , Ácido Ascórbico/metabolismo , Cádmio/efeitos adversos , Metabolismo dos Carboidratos/efeitos dos fármacos , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Cinetina/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/fisiologia , Fotossíntese/efeitos dos fármacos , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Plântula/metabolismo , Trigonella/crescimento & desenvolvimento
5.
Plant Sci ; 303: 110795, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487367

RESUMO

Under natural field conditions, plants usually experience fluctuating light (FL) under moderate heat stress in summer. However, responses of photosystems I and II (PSI and PSII) to such combined stresses are not well known. Furthermore, the role of water-water cycle (WWC) in photoprotection in FL under moderate heat stress is poorly understood. In this study, we examined chlorophyll fluorescence and P700 redox state in FL at 42 °C in two orchids, Dendrobium officinale (with high WWC activity) and Bletilla striata (with low WWC activity). After FL treatment at 42 °C, PSI activity maintained stable while PSII activity decreased significantly in these two orchids. In D. officinale, the WWC could rapidly consume the excess excitation energy in PSI and thus avoided an over-reduction of PSI upon any increase in illumination. Therefore, in D. officinale, WWC likely protected PSI in FL at 42 °C. In B. striata, heat-induced PSII photoinhibition down-regulated electron flow from PSII and thus prevented an over-reduction of PSI after transition from low to high light. Consequently, in B. striata moderate PSII photoinhibition could protected PSI in FL at 42 °C. We conclude that, in addition to cyclic electron flow, WWC and PSII photoinhibition-repair cycle are two important strategies for preventing PSI photoinhibition in FL under moderate heat stress.


Assuntos
Dendrobium/metabolismo , Orchidaceae/metabolismo , Complexo de Proteína do Fotossistema I/fisiologia , Dendrobium/fisiologia , Resposta ao Choque Térmico , Luz , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia , Complexo de Proteína do Fotossistema II/efeitos da radiação
7.
Plant Cell Physiol ; 62(1): 178-190, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33258963

RESUMO

Photosystem II (PSII) is a large membrane protein complex performing primary charge separation in oxygenic photosynthesis. The biogenesis of PSII is a complicated process that involves a coordinated linking of assembly modules in a precise order. Each such module consists of one large chlorophyll (Chl)-binding protein, number of small membrane polypeptides, pigments and other cofactors. We isolated the CP47 antenna module from the cyanobacterium Synechocystis sp. PCC 6803 and found that it contains a 11-kDa protein encoded by the ssl2148 gene. This protein was named Psb35 and its presence in the CP47 module was confirmed by the isolation of FLAG-tagged version of Psb35. Using this pulldown assay, we showed that the Psb35 remains attached to CP47 after the integration of CP47 into PSII complexes. However, the isolated Psb35-PSIIs were enriched with auxiliary PSII assembly factors like Psb27, Psb28-1, Psb28-2 and RubA while they lacked the lumenal proteins stabilizing the PSII oxygen-evolving complex. In addition, the Psb35 co-purified with a large unique complex of CP47 and photosystem I trimer. The absence of Psb35 led to a lower accumulation and decreased stability of the CP47 antenna module and associated high-light-inducible proteins but did not change the growth rate of the cyanobacterium under the variety of light regimes. Nevertheless, in comparison with WT, the Psb35-less mutant showed an accelerated pigment bleaching during prolonged dark incubation. The results suggest an involvement of Psb35 in the life cycle of cyanobacterial Chl-binding proteins, especially CP47.


Assuntos
Proteínas de Bactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Proteínas de Bactérias/efeitos da radiação , Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/fisiologia , Estrutura Terciária de Proteína , Synechocystis/efeitos da radiação
8.
Plant Physiol Biochem ; 158: 136-145, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33307425

RESUMO

Microalgae can respond to long-term increases in light intensity by altering the concentration of photosynthetic complexes. Under active growth, the ability of Chlamydomonas reinhardtii to acclimate to excess light is dependent on cell division to reduce the concentration of photosynthetic complexes. But, in batch culture, cells eventually reach stationary phase where their ability to divide is limited; this should impact their capacity to undergo photoacclimation. Our goal is to dissect excess-light responses as cells approach stationary phase and to determine how the strategies of photoacclimation differ compared to cells in the exponential-growth phase. In this study, cultures exited exponential growth and transitioned into a declining growth phase (DGP), where cells continued a slow rate of growth for the next seven days in both low (LL) and high-light (HL). During this period, both cultures experience a conditional senescence-related decline in chlorophyll levels. Under HL, however, the senescing cultures have a rapid decline in PSII reaction centres, maintain a stable concentration of LHCII antenna, rapidly increase LHCSR levels, and have a sustained increase in Fo/Fm. Collectively this implies that the remaining antenna act as pH-dependent, quenching centres, presumably to protect the senescing chloroplast against HL. We discovered that acclimating to HL post-exponential phase involves active degradation that is intertwined with the normal senescence process that allowed for a limited rate of cell division.


Assuntos
Aclimatação , Chlamydomonas reinhardtii/efeitos da radiação , Luz , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Clorofila , Concentração de Íons de Hidrogênio , Fotossíntese , Complexo de Proteína do Fotossistema II/fisiologia
9.
Plant Biol (Stuttg) ; 23(1): 83-90, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32772453

RESUMO

Welsh onions (Allium fistulosum L.) are often affected by stressful environments, such as high light and drought, during summer cultivation, which hinders their growth. We used CO2 assimilation, OJIP transient and MR curves to analyse the photosynthetic characteristics of Welsh onion. The results showed that single high light stress caused a decrease in the net photosynthesis rate through stomatal limitation, while the single drought treatment and the combined stress induced nonstomatal limitation. FO and FJ increased, Fm decreased, and a distinct K-phase was induced. High light and drought stress blocked MR transients, leading to a gradual decrease in VPSI and VPSII-PSI . In general, photosynthesis of Welsh onion was inhibited by high light and drought, which destroyed the receptor and donor side of PSII and reduced electron transport capacity of PSII and PSI.


Assuntos
Allium/fisiologia , Fotossíntese , Folhas de Planta/fisiologia , Clorofila , Complexo de Proteína do Fotossistema I/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Solo , Água
10.
Plant J ; 104(6): 1724-1735, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33085804

RESUMO

Neoxanthin (Neo), which is only bound to the peripheral antenna proteins of photosystem (PS) II, is a conserved carotenoid in all green plants. It has been demonstrated that Neo plays an important role in photoprotection and its deficiency fails to impact LHCII stability in vitro and indoor plant growth in vivo. Whether Neo is involved in maintaining the PSII complex structure or adaptive mechanisms for the everchanging environment has not yet been elucidated. In this study, the role of Neo in maintaining the structure and function of the PSII-LHCII supercomplexes was studied using Neo deficient Arabidopsis mutants. Our results show that Neo deficiency had little effect on the electron transport capacity and the plant fitness, but the PSII-LHCII supercomplexes were significantly impacted by the lack of Neo. In the absence of Neo, the M-type LHCII trimer cannot effectively associate with the C2 S2 -type PSII-LHCII supercomplexes even in moderate light conditions. Interestingly, Neo deficiency also leads to decreased PSII protein phosphorylation but rapid transition from state 1 to state 2. We suggest that Neo might enforce the interactions between LHCII and the minor antennas and that the absence of Neo makes M-type LHCII disassociate from the PSII complex, leading to the disassembly of the PSII-LHCII C2 S2 M2 supercomplexes, which results in alterations in the phosphorylation patterns of the thylakoid photosynthetic proteins and the kinetics of state transition.


Assuntos
Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Xantofilas/metabolismo , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Cinética , Microscopia Eletrônica de Transmissão , Fosforilação , Fotossíntese , Complexo de Proteína do Fotossistema II/fisiologia , Tilacoides/metabolismo , Tilacoides/ultraestrutura
11.
Biochem Biophys Res Commun ; 533(4): 1129-1134, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33046242

RESUMO

Thermal imaging was used to study the early stage response to light-induced heating of Arabidopsis thaliana leaves. Time-series thermograms provided a spatial and temporal characterization of temperature changes in Arabidopsis wild type and the ost1-2 mutant rosettes exposed to excessive illumination. The initial response to high light, defined by the exponential increase in leaf temperature of ost1-2 gave an increased thermal time constant compared to wild type plants. The inability to regulate stomata in ost1-2 resulted in enhanced stomatal conductance and transpiration rate. Under strong irradiation, a significant decline in the efficiency of photosystem II was observed. This study evaluates infrared thermography kinetics and determines thermal time constants in particular, as an early and rapid method for diagnosing the prime indicators of light stress in plants under excessive light conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia , Estômatos de Plantas/metabolismo , Proteínas Quinases/metabolismo , Termografia/métodos , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Mutação , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Proteínas Quinases/genética , Temperatura
12.
Plant Physiol Biochem ; 155: 965-979, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32977141

RESUMO

There is increasing experimental evidence that strigolactones, a class of carotenoid-derived sesquiterpenoid hormones, and their downstream signal components play a role in plant resilience to abiotic stress. Strigolactones positively influence plant coping mechanisms in response to abiotic stressors like drought and high salinity. In this study, we examined the effects of rac-GR24 (a synthetic strigolactone analog) and strigolactone inhibitors on the physiological and molecular responses associated with thermotolerance during seed germination and seedling development in Lupinus angustifolius under heat stress. Photosystem I & II functions were also evaluated via Chl a fluorescence transient analysis in heat stressed lupine seedlings. Our results suggest a putative role for GR24 in mediating tolerance to heat stress during seed germination and seedling development albeit these responses appeared independent of D14-mediated signalling. Seeds primed with GR24 had the highest of all germination indices, enhanced proline content and reduced peroxidation of lipids. GR24 also enhanced the activities of enzymes of the antioxidant and glyoxalase systems in lupine seedlings. The JIP-test indicated that GR24 conferred resistance to heat stress-induced damage to the oxygen evolution complex while also preventing the inactivation of PSII reaction centres thus ensuring PSII thermotolerance.


Assuntos
Germinação , Resposta ao Choque Térmico , Compostos Heterocíclicos com 3 Anéis/farmacologia , Lactonas/farmacologia , Lupinus/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Plântula/fisiologia , Sementes/fisiologia
13.
Plant Physiol Biochem ; 155: 93-104, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32745934

RESUMO

Plants are always suffering periods of soil water deficit and sustained soil salinity during their life cycle. Unraveling the mechanisms underpinning the responses of plants, especially the photosynthesis, to drought, salinity, and co-occurring stresses is critical for both the protection of natural vegetation and the stabilization of crop production. To better understand the downregulation of photosynthetic capability induced by soil salinity and drought, gas exchange parameters, leaf pigment contents, and chlorophyll (Chl) a fluorescence transients were analyzed in leaves of Hybrid Pennisetum. Our results showed that long-term moderate salinity, short-term drought, and the combination of these stressors decreased leaf pigment content by 11.4-31.5% and net photosynthetic rate (Pn) by 14.6-67.6% compared to those in untreated plants. The reduction of Pn in Hybrid Pennisetum under long-term salinity stress mainly occurred by stomatal limitation, whereas non-stomatal limitation played a dominant role under short-term drought stress. The changes in Chl a fluorescence kinetics (especially the appearance of the L-band and K-band) in both stress treatments showed that salinity and drought stress damaged the structural stability of photosystem II (PSII) and disturbed the equilibrium between the electrons at the acceptor and donor sides of PSII. Furthermore, although the negative effect of drought stress on leaf photosynthesis was much greater than that of salinity stress, moderate salt stress alleviated the negative effect of drought stress on the photosynthetic performance of Hybrid Pennisetum after long acclimation times.


Assuntos
Secas , Pennisetum/fisiologia , Fotossíntese , Salinidade , Estresse Fisiológico , Clorofila , Complexo de Proteína do Fotossistema II/fisiologia , Folhas de Planta/fisiologia , Água
14.
Nat Plants ; 6(8): 1031-1043, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32719473

RESUMO

The unparalleled performance of Chlorella ohadii under irradiances of twice full sunlight underlines the gaps in our understanding of how the photosynthetic machinery operates, and what sets its upper functional limit. Rather than succumbing to photodamage under extreme irradiance, unique features of photosystem II function allow C. ohadii to maintain high rates of photosynthesis and growth, accompanied by major changes in composition and cellular structure. This remarkable resilience allowed us to investigate the systems response of photosynthesis and growth to extreme illumination in a metabolically active cell. Using redox proteomics, transcriptomics, metabolomics and lipidomics, we explored the cellular mechanisms that promote dissipation of excess redox energy, protein S-glutathionylation, inorganic carbon concentration, lipid and starch accumulation, and thylakoid stacking. C. ohadii possesses a readily available capacity to utilize a sudden excess of reducing power and carbon for growth and reserve formation, and post-translational redox regulation plays a pivotal role in this rapid response. Frequently the response in C. ohadii deviated from that of model species, reflecting its life history in desert sand crusts. Comparative global and case-specific analyses provided insights into the potential evolutionary role of effective reductant utilization in this extreme resistance of C. ohadii to extreme irradiation.


Assuntos
Chlorella/metabolismo , Proteínas de Algas/metabolismo , Proteínas de Algas/fisiologia , Chlorella/fisiologia , Chlorella/efeitos da radiação , Clima Desértico , Perfilação da Expressão Gênica , Lipidômica , Metabolômica , Oxirredução/efeitos da radiação , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia , Proteômica
15.
Plant Physiol ; 184(2): 1181-1193, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32665333

RESUMO

Optimizing the photoprotection of different leaves as a whole is important for plants to adapt to fluctuations in ambient light conditions. However, the molecular basis of this leaf-to-leaf communication is poorly understood. Here, we used a range of techniques, including grafting, chlorophyll fluorescence, revers transcription quantitative PCR, immunoblotting, chromatin immunoprecipitation, and electrophoretic mobility shift assays, to explore the complexities of leaf-to-leaf light signal transmission and activation of the photoprotective response to light fluctuation in tomato (Solanum lycopersicum). We established that light perception in the top leaves attenuated the photoinhibition of both PSII and PSI by triggering photoprotection pathways in the bottom leaves. Local light promoted the accumulation and movement of LONG HYPOCOTYL5 from the sunlit local leaves to the systemic leaves, priming the photoprotective response of the latter to light fluctuation. By directly activating the transcription of PROTON GRADIENT REGULATION5 and VIOLAXANTHIN DE-EPOXIDASE, LONG HYPOCOTYL5 induced cyclic electron flow, the xanthophyll cycle, and energy-dependent quenching. Our findings reveal a systemic signaling pathway and provide insight into an elaborate regulatory network, demonstrating a pre-emptive advantage in terms of the activation of photoprotection and, hence, the ability to survive in a fluctuating light environment.


Assuntos
Luz , Folhas de Planta/fisiologia , Transdução de Sinais/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Variação Genética , Genótipo , Mutação , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia
16.
Nat Plants ; 6(8): 1044-1053, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32661277

RESUMO

Plants and cyanobacteria use the chlorophylls embedded in their photosystems to absorb photons and perform charge separation, the first step of converting solar energy to chemical energy. While oxygenic photosynthesis is primarily based on chlorophyll a photochemistry, which is powered by red light, a few cyanobacterial species can harness less energetic photons when growing in far-red light. Acclimatization to far-red light involves the incorporation of a small number of molecules of red-shifted chlorophyll f in the photosystems, whereas the most abundant pigment remains chlorophyll a. Due to its different energetics, chlorophyll f is expected to alter the excited-state dynamics of the photosynthetic units and, ultimately, their performances. Here we combined time-resolved fluorescence measurements on intact cells and isolated complexes to show that chlorophyll f insertion slows down the overall energy trapping in both photosystems. While this marginally affects the efficiency of photosystem I, it substantially decreases that of photosystem II. Nevertheless, we show that despite the lower energy output, the insertion of red-shifted chlorophylls in the photosystems remains advantageous in environments that are enriched in far-red light and therefore represents a viable strategy for extending the photosynthetically active spectrum in other organisms, including plants. However, careful design of the new photosynthetic units will be required to preserve their efficiency.


Assuntos
Clorofila/análogos & derivados , Fotossíntese , Clorofila/metabolismo , Cianobactérias/metabolismo , Luz , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia
17.
Plant Physiol Biochem ; 154: 160-170, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32563040

RESUMO

In photosynthesis, the antenna system captures solar energy and transfers the excitations to photosystem II (PSII) core complex where charge separation, water splitting and oxygen evolution occur. In the evolution of photosynthesis from aquatic to terrestrial environments, the structure of PSII core complex was highly conserved while a variety of antenna forms became differentiated. In order to study the principles for energy transport from antenna to the PSII reaction center, we have explored whether the major light harvesting complex of PSII (LHCII) of higher plants can transfer energy to the cyanobacteria PSII core complexes (CC). For this purpose, LHCII from pea and CC from Thermosynechococcus vulcanus were isolated and co-reconstituted into liposome at LHCII:CC molar ratios of 2:1, 4:1 and 6:1, respectively. Chemical-cross linking followed by LC-MS/MS analysis confirmed the biochemical interaction between LHCII and CC in the liposome membrane. The analyses of 77 K fluorescence emission spectra and antenna cross section of PSII indicated that LHCII can transfer energy directly to the cyanobacterial CC. The study has laid the basis for further research on the mechanism of energy transfer from LHCII to PSII CC. This result may also open a new possibility for design and development of new artificial PSII in the application of solar energy conversion.


Assuntos
Complexo de Proteína do Fotossistema II/fisiologia , Thermosynechococcus/enzimologia , Cromatografia Líquida , Fotossíntese , Espectrometria de Massas em Tandem
18.
Plant Sci ; 296: 110488, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32540008

RESUMO

The results of the present work suggested a relationship between the growth stability and functional/structural parameters associated to the primary photochemistry and oxygen evolving complex (OEC) in tolerant rice plants under suboptimal low temperatures (SLT) stress. This was concluded from the absence of changes in net photosynthetic rate and in fraction of reaction centers to reduce quinone A, and very small changes in P680 efficiency to trap and donate electrons to quinone A and in fraction of active OEC in tolerant plants under cold stress but not in sensitive plants. The SLT stress also induced OEC activity limitations in both genotypes, but in a greater extent in sensitive plants. However, an assay using an artificial electron donor to replace OEC indicated that the P680+ capacity to accept electrons was not altered in both genotypes under SLT stress from the beginning of the stress treatment, suggesting that the OEC structure stability is related to rice SLT tolerance to sustain the photosynthesis. This hypothesis was also supported by the fact that tolerant plants but not sensitive plants did not alter the gene expression and protein content of PsbP under SLT stress, an OEC subunit with a role in stabilizing of OEC structure.


Assuntos
Oryza/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Resposta ao Choque Frio , Fluorescência , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tilacoides/metabolismo , Transcriptoma
19.
Plant Physiol Biochem ; 153: 30-39, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32474384

RESUMO

High temperatures limit the successful cultivation of the Hylocereus species on a global basis. We aimed to investigate the degree of heat tolerance in three species, namely, the diploids Hylocereus undatus and H. monacanthus, and the tetraploid H. megalanthus, and nine of their interspecific-interploid hybrids. Rooted cuttings were exposed to heat stress (45/35 °C) or control conditions (25/20 °C) for eight days. Initially, the plants were screened for their tolerance to heat stress and ranked into four heat tolerance categories: good tolerance, moderate tolerance, low tolerance, or sensitive, according to the decrease in the maximum quantum efficiency of photosystem II (Fv/Fm) and visual stem damage. The physiological and biochemical performances of the parental species and of three hybrids representing three different heat-tolerance categories were further analyzed in depth. H. megalanthus (classified as heat sensitive) showed a 65% decrease in Fv/Fm and severe visual stem damage, along with a marked reduction in total chlorophyll content, a large increase in malondialdehyde, and inhibition of catalase activity. H. undatus and H. monacanthus, (classified as low-tolerance species) exhibited slight stem "liquification." The good-tolerance hybrid Z-16 exhibited the best performance under heat stress (21% decrease in Fv/Fm) and the absence of stem damage, coupled with a small decrease in total chlorophyll content, a slight increase in malondialdehyde, high antioxidant activity, and proline accumulation progressing with time. Our findings revealed that most of the hybrids performed better than their parental species, indicating that our breeding programs can provide Hylocereus cultivars suitable for cultivation in heat-challenging regions.


Assuntos
Cactaceae/fisiologia , Temperatura Alta , Estresse Fisiológico , Clorofila/análise , Complexo de Proteína do Fotossistema II/fisiologia , Melhoramento Vegetal
20.
Plant Physiol Biochem ; 151: 188-196, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32224390

RESUMO

Drought has become an increasingly serious ecological problem that limits crop production. However, little is known about the response of ginger (Zingiber officinale Roscoe) to drought and shading, especially with respect to photosynthetic electron transport. Here, differential proteomics was used to study the response of ginger to four experimental treatments: control, drought, 50% shading, and the combination of 50% shading and drought. Proteomic analysis suggested that ginger increased cyclic electron flow under drought stress by enhancing the expression of proteins related to photosystem I and cytochrome b6f. Shading significantly increased the expression of proteins related to the light harvesting complex, even under drought stress. In addition, shading increased the expression of proteins related to the oxygen evolution complex, plastocyanin, and ferredoxin-NADP+ reductase (FNR), thereby enhancing the efficiency of photosynthetic electron utilization. The shading and drought combination treatment appeared to enhance ginger's drought tolerance by reducing the expression of FNR and enhancing cyclic electron flow. Photosynthetic and fluorescence parameters showed that drought stress caused non-stomatal limitation of photosynthesis in ginger leaves. Drought stress also significantly reduced the quantum efficiency of photosystem II (Fv/Fm), the non-cyclic electron transfer efficiency of photosystem II (ϕPSII), and photochemical quenching (qP), while simultaneously increasing nonphotochemical quenching (NPQ). The addition of shading improved photosynthetic efficiency under drought. These results provide important baseline information on the photosynthetic mechanisms by which ginger responds to drought and shading. In addition, they provide a theoretical basis for the study of shade cultivation during the arid season.


Assuntos
Escuridão , Secas , Proteoma , Estresse Fisiológico , /química , /fisiologia , Fotossíntese , Complexo de Proteína do Fotossistema II/fisiologia , Folhas de Planta/fisiologia , Luz Solar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...